https://chatgpt.com/share/6996bd05-d8ec-800a-9716-c8bb927ed3c7
Time.
Wednesday, 18 February 2026
Friday, 6 February 2026
Genral aptitude placement
haan bhai, placement ke liye aptitude kaafi important hota hai — especially on-campus placements me. ๐ฏ
Tech skills matter karti hain, but aptitude pehle gatekeeper hota hai.
๐ง Aptitude kyun important hai?
1st round almost hamesha aptitude hota hai
Companies check karti hain:
logical thinking
problem-solving speed
pressure handling
Bahut log DSA/Dev strong hoke bhi aptitude me out ho jaate hain (sad but true ๐ )
๐ Placement Aptitude ke MUST-DO Topics
๐ข Quantitative Aptitude (เคธเคฌเคธे heavy)

Ye topics 100% padhne chahiye:
Percentages
Ratio & Proportion
Profit & Loss
Simple & Compound Interest
Time & Work
Pipes & Cisterns
Time, Speed & Distance
Averages
Mixtures & Alligation
Number System
HCF / LCM
Divisibility
Remainders
Permutations & Combinations (basic)
Probability (basic)
๐ Tip: Formula se zyada short tricks + practice important hai.
๐งฉ Logical Reasoning (sabse scoring)

Seating Arrangement
Linear
Circular
Puzzles
Blood Relations
Direction Sense
Syllogism
Series (Number / Alphabet)
Coding-Decoding
Venn Diagrams
Data Sufficiency
Statement & Conclusion
๐ Isme logic click ho gaya toh marks free ๐
๐ Data Interpretation (easy but time-killer)
Bar Graph
Pie Chart
Line Graph
Tables
Caselets
๐ Calculator allowed hota hai mostly, but speed chahiye.
๐ง Verbal Ability (ignore mat karna)

Reading Comprehension
Sentence Correction
Fill in the Blanks
Synonyms / Antonyms
Para Jumbles
Error Spotting
๐ข Company-wise Priority
| Company Type | Aptitude Level |
|---|---|
| Service-based (TCS, Infosys, Wipro) | ⭐⭐⭐⭐⭐ |
| Product-based (Amazon, Microsoft) | ⭐⭐⭐ |
| Startups | ⭐⭐ |
| Off-campus | ⭐⭐⭐ |
⏳ Kitna time kaafi hai?
Daily 1–1.5 hour
2–3 months = solid enough for placements
๐ Best Strategy (simple & effective)
Pehle Quant + Reasoning khatam karo
Daily 20–30 questions practice
Weekly 1 mock test
Galtiyon ka error notebook banao
Agar bole toh:
main 2 month ka exact aptitude timetable bana du
ya company-wise aptitude pattern (TCS / Accenture / Amazon) explain kar du
ya best free + Coursera resources suggest kar du (tere Coursera access ko use karke ๐)
bol bhai, kya chahiye next? ๐
Monday, 2 February 2026
Sunday, 1 February 2026
how to import data and finetune
Bhai sabse pehle clear context:
๐ Tu ne jo dataset share kiya hai:
๐ https://huggingface.co/datasets/cerebras/SlimPajama-627B
Ye ek MEGA text dataset hai, jo LLMs ko pre-training ke liye use hota hai — not fine-tuning.
Matlab ye full language model training data hai, jisko GPT-type models pe next-token prediction training ke liye use karte.
๐ง Ye dataset kis kaam aata hai?
✔️ Pre-training a large language model
Ye data istemal hota hai jab tu ek naya LLM scratch se bana raha hai, jaisa:
GPT-style model
Transformer decoder
Next word prediction
❌ NOT typical fine-tuning data
Ye data supervised labels wala nahi hota
-> Tu isko sentiment / QA / classification training mein seedha use nahi karta
๐ Intuition (very simple)
Ye dataset = billion+ text tokens
LLMs ko sikhata hai:
๐ “agla word kya hona chahiye given context?”
Ye training objective kehlata hai:
causal language modeling
๐ง Yeh dataset ka size
“627B” matlab 627 billion tokens
๐ Bahut huge
๐ Normal machines pe chalana impossible
(Hugging Face aur big research labs hi chalate)
❓ Tu puch raha hai:
"Ispe ek demo model train kaise kare?"
Bhai practical machines pe SlimPajama-627B training impossible hai.
Ye sirf research clusters ke liye banaya gaya hai.
Lekin hum demo/mini training dikha sakte hain chhote slices ya down-sampled dataset ke sath.
๐ฏ Demo goal
๐ Hum super small subset lete hain (first 1000 lines)
๐ Fir ek tiny transformer ko
๐ train karte hain causal language modeling pe
๐ Ye demo sirf samjhaane ke liye
๐ ️ Step by Step Demo (PyTorch + HuggingFace)
1️⃣ Install
pip install transformers datasets accelerate
2️⃣ Load tiny subset
from datasets import load_dataset
dataset = load_dataset("cerebras/SlimPajama-627B", split="train[:1%]")
print(dataset)
Ye first 1% data load karega — still huge, but demo friendly.
3️⃣ Tokenizer & Model Setup (SUPER SMALL)
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("gpt2")
Use GPT-2 base (chhota, manageable)
4️⃣ Preprocess Data
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True, max_length=128)
tokenized = dataset.map(tokenize_function, batched=True, remove_columns=["text"])
5️⃣ Trainer Setup
from transformers import Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir="./tiny_gpt2",
num_train_epochs=1,
per_device_train_batch_size=4,
save_steps=500,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized,
)
trainer.train()
๐ง Important Notes
❗ SlimPajama-627B is NOT a fine-tuning dataset
Ye pre-training text data hai — emulates billions of sentences.
⚠️ Demo only trains GPT-2 on subset of data
Ye fully actual SlimPajama training nahi hai.
๐ฏ Real usage in research
Big labs use:
Massive clusters (thousands of GPUs)
Custom training loops
Megatron-LM / DeepSpeed / ColossalAI
๐ง One-line summary
SlimPajama-627B dataset is a huge pre-training text corpus used to train large open-source language models from scratch.
On ordinary machines, you can use only a small slice of it to demo small transformer training.
๐ฅ Next if you want
Bata de bhai, I can give you:
✅ real fine-tuning example for:
DistilGPT2
LLaMA / Alpaca-style
Mistral / Phi2
✅ Trainer with LoRA (efficient fine-tuning)
✅ Code to export weights & inference script
Just bol ๐
Bhai ๐ฅ ye bahut sahi question hai — exactly LLM engineer mindset.
Tu basically pooch raha hai:
“Kaun-kaun se models hain jo
AutoModelForCausalLM.from_pretrained()se load ho jaate hain
aur jinko main Google Colab pe fine-tune kar sakta hoon?”
Chal clean + practical list deta hoon, Colab-friendly order mein ๐
๐ง Rule yaad rakh (pehle)
Jis model ka type = Causal Language Model (decoder-only)
→ woAutoModelForCausalLMse load hota hai
→ next-token prediction pe fine-tune hota hai
✅ BEST MODELS FOR COLAB FINETUNING (2025)
๐ข 1️⃣ GPT-2 family (BEGINNER FRIENDLY)
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("gpt2")
Variants:
gpt2gpt2-mediumgpt2-large
✔️ Lightweight
✔️ CPU/GPU dono pe chalta
✔️ SlimPajama jaise data pe demo ke liye perfect
๐ข 2️⃣ DistilGPT-2 (FASTEST)
model = AutoModelForCausalLM.from_pretrained("distilgpt2")
✔️ GPT-2 ka compressed version
✔️ Colab free tier pe smooth
✔️ Learning ke liye ๐ฅ
๐ข 3️⃣ Microsoft Phi Models (TOP CHOICE ๐ฅ)
Phi-2
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2")
Phi-3 Mini
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-4k-instruct"
)
✔️ Small
✔️ High quality
✔️ Research + projects ke liye best
๐ข 4️⃣ Mistral-7B (ADVANCED)
model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-v0.1",
device_map="auto"
)
⚠️ GPU required
⚠️ Colab T4 / A100 recommended
๐ LoRA / QLoRA ke saath hi fine-tune karo
๐ข 5️⃣ LLaMA-3 (State-of-the-art)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Meta-Llama-3-8B",
device_map="auto"
)
✔️ GPT-3.5+ quality
⚠️ HuggingFace access approval required
⚠️ LoRA mandatory for Colab
๐ข 6️⃣ Falcon (Lightweight 7B)
model = AutoModelForCausalLM.from_pretrained(
"tiiuae/falcon-7b",
device_map="auto"
)
๐ข 7️⃣ Tiny Models (EXPERIMENT / DEMO)
model = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2")
✔️ Ultra fast
✔️ Testing pipelines only
❌ Models jo AutoModelForCausalLM se NAHI aate
| Model | Kyun nahi |
|---|---|
| BERT | Encoder-only (masked LM) |
| RoBERTa | Not causal |
| T5 | Encoder-decoder |
| SentenceTransformer | Embeddings only |
๐ง Which model tu choose kare? (Decision table)
| Goal | Model |
|---|---|
| LLM basics seekhna | distilgpt2 |
| Demo pretraining | gpt2 |
| Research quality | phi-2 |
| Real LLM project | phi-3-mini |
| Advanced LLM | mistral-7b |
| SOTA | llama-3 |
๐ฅ Mini fine-tuning pattern (same for all)
from transformers import Trainer, TrainingArguments
trainer = Trainer(
model=model,
args=TrainingArguments(
output_dir="./out",
per_device_train_batch_size=2,
num_train_epochs=1,
),
train_dataset=tokenized_data,
)
trainer.train()
๐ง One-line yaad rakh
Decoder-only models = AutoModelForCausalLM = Colab-friendly fine-tuning
Agar bole toh next:
GPT-2 vs Phi-2 vs Mistral comparison
LoRA / QLoRA full code
SlimPajama pe best preprocessing
Memory optimization tricks
Bas bol bhai ๐
Haan bhai ๐ DistilBERT aur “aur kaunse models” ka confusion bilkul normal hai.
Chal clean separation + examples ke saath samjhaata hoon.
๐ SABSE IMPORTANT RULE (yaad rakh)
AutoModelForCausalLM= text GENERATION (next word)AutoModel / AutoModelForSequenceClassification= understanding tasks
Isliye DistilBERT ≠ GPT-type model.
๐ด DistilBERT ko AutoModelForCausalLM se kyun nahi laa sakte?
❌ DistilBERT:
Encoder-only model
Masked Language Model (MLM)
Text generate nahi karta
๐ Isliye ye ❌:
AutoModelForCausalLM.from_pretrained("distilbert-base-uncased")
๐ข DistilBERT actually kis kaam aata hai?
Tasks:
Text classification
Sentiment analysis
Similarity
NER
QA (span-based)
Correct import ๐
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
model = AutoModel.from_pretrained("distilbert-base-uncased")
๐ฅ DistilBERT fine-tuning example (classification)
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained(
"distilbert-base-uncased",
num_labels=2
)
๐ง Ab COMPLETE MODEL MAP (CONFUSION END)
๐ข A. GENERATIVE MODELS (AutoModelForCausalLM)
| Model | Use |
|---|---|
| gpt2 | Text generation |
| distilgpt2 | Fast generation |
| phi-2 | High-quality small LLM |
| phi-3-mini | Modern LLM |
| mistral-7b | Large LLM |
| llama-3 | SOTA |
Example:
AutoModelForCausalLM.from_pretrained("distilgpt2")
๐ก B. ENCODER MODELS (UNDERSTANDING)
| Model | Use |
|---|---|
| bert-base | Understanding |
| distilbert | Fast BERT |
| roberta | Better BERT |
| albert | Lightweight |
| electra | Efficient |
Example:
AutoModel.from_pretrained("distilbert-base-uncased")
๐ต C. SEQ2SEQ MODELS (INPUT → OUTPUT)
| Model | Use |
|---|---|
| t5 | Text → text |
| bart | Summarization |
| flan-t5 | Instruction tasks |
Example:
AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
๐ค “Toh main DistilBERT ko fine-tune kar sakta hoon?”
✅ YES — but NOT for generation
Example use-cases:
“Is review positive or negative?”
“Are these two sentences similar?”
“Is this spam?”
๐ง When to use WHAT (decision table)
| Tu kya banana chahta hai | Model |
|---|---|
| ChatGPT-like bot | GPT / Phi / Mistral |
| Text generation | CausalLM |
| Sentence similarity | DistilBERT |
| Sentiment analysis | DistilBERT |
| Q&A system | BERT / RoBERTa |
| Summarization | T5 / BART |
๐ฅ One-line clarity (exam/interview ready)
DistilBERT is an encoder-only model used for text understanding,
while GPT-style models are decoder-only and used for text generation.
Agar tu bole next:
DistilBERT fine-tuning demo (sentiment)
DistilBERT embeddings vs SentenceTransformer
GPT vs BERT architecture diagram
Kaunsa model CV ke liye best
bol de bhai ๐
Friday, 30 January 2026
how to create conda enviroment
✅ EXACT FIX (2 minute ka kaam)
๐น Step 1: Check current channels
conda config --show channels
Tumhe kuch aisa dikhega:
channels:
(empty)
๐น Step 2: Add conda-forge channel (IMPORTANT)
conda config --add channels conda-forge
conda config --set channel_priority strict
Verify:
conda config --show channels
Output hona chahiye:
channels: - conda-forge
๐น Step 3: NOW create environment (this will work)
conda create -n ml-env python=3.10
Activate:
conda activate ml-env
Check:
python --version
Friday, 16 January 2026
chagpt link for tranformer model
Friday, 9 January 2026
binary search code -:
void insertInterval(List<int[]> intervals, int left, int right) {
int lo = 0, hi = intervals.size();
while (lo < hi) {
int mid = (lo + hi) / 2;
if (intervals.get(mid)[0] < left) {
lo = mid + 1;
} else {
hi = mid;
}
}
intervals.add(lo, new int[]{left, right});
}
Hello
iot arch
https://chatgpt.com/share/6996bd05-d8ec-800a-9716-c8bb927ed3c7
-
1. Deep learning specilization deeplearning.ai link- link (do a research what is transfer learning) 2. machine learning ka youtube ka cou...
-
kaise use karna Bhai .apply() Pandas ka most used aur most powerful function hai — ye tab use hota hai jab: Tum har row ya har col...
-
1: PriorityQueue<long[]> occ = new PriorityQueue<>((a, b) -> { if(a[2] != b[2]) { ...